JL Seminar

Contents

1	Introduction	1
	1.1 Writing conventions	1
	1.2 Notation	2
2	Overview	3
	2.1 Structure on subgroups	3
	2.2 Kirillov model	3
3	Uniqueness of models	4
	3.1 Representations and functionals on Schwartz Space	4
	3.2 Uniqueness of Whittaker functional	5
	3.3 Uniqueness of Kirillov model	6
	3.4 Uniqueness of Whittaker Model	7
4	Contragredient Representation	8
	4.1 Action of Hecke algebra	8
	4.2 Hecke alg. of cpt. open sbgrp	9
	4.3 Idempotented algebras	10
	4.4 Contragredient representation	11
5	Appendix	13
	5.1 Topological Groups	13
	5.2 Smooth and admissible representations	13

1 Introduction

1.1. Our goal is to understand irred. adm. repn. of $GL_n(F)$ for n = 2, F local narc.

1.1 Writing conventions

1.2. I will be using many shorthands, generally following a "syllabic abbreviation", i.e.

- ext. : extension. With first three letters for the type of extensions.
 - alg./sep. : algebraic/separable
- cplt./cpt./td.: complete/compact/totally disconnected.
- wrt./narc. : with respect to/ non-archimedean.

In general, the context (ctx) should make it clear what I'm talking about.

1.2 Notation

1.3. We let F be a fixed loc. field.

- \mathcal{O}_F its ring of integers, \mathcal{O}_F^{\times} its grp of units.
- \mathfrak{p} max. ideal of \mathcal{O}_F with ϖ a gen. of \mathfrak{p} .
- ψ a fixed ntriv. add. char. of F.

1.4. We follow the notation in [JL70] with minor modification. Let $G_F := \operatorname{GL}_2(F)$ we describe several sbgps

- $K_F := \operatorname{GL}_2(\mathcal{O}_F)$, is also a¹ max. cpt. open sbgrp.
- Z_F is center of G_F consisting of scalar matrices, hence iso. to F^{\times} .
- D_F be sbgrp. of matrices of the from $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$, $a \in F^{\times}, b \in F$.
- B_F is sbgrp. of matrices of the form $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$, also known as *Borel subgrp*, $a, d \in F^{\times}, b \in F$.
- N_F is sbgrp. of matrices of the form $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, $b \in F$. We thus have an identification

$$F \xrightarrow{\simeq} N_F, x \mapsto n_x \coloneqq \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$$

• T_F is subgrp. of diagonal matrices. the form $\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}$, $a, d \in F^{\times}$.

• C_F is subgrp. of matrices of the form $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, $a \in F^{\times}$.

1.5. Mapping spaces. Let X be a space, $V \in \text{Vect}_{\mathbb{C}}$.

- Map(X, V) is the set of V-valued fncs.
- $\operatorname{Map}^{\infty}(X, V)$ " loc. const. V-valued fncs.
- $\operatorname{Map}_{c}^{\infty}(X, V)$ " loc. const. cptly supported V-value fncs.

Remark 1.6. When $V = \mathbb{C}$, we often omit the V. The second and third type are also called *smooth* and *schwartz* functions respectively, denoted as $C^{\infty}(X, V)$ and S(X, V) in [JL70].

¹ is this the?

2 Overview

- 2.1. [PS83, 13] The method of constructing repns consists of three stages.
 - 1. Use general methods to construct representations of D_F .
 - 2. Then we "jump" to B_F an induce characters from B_F to G.
 - 3. The last is to explore those repns that do not appear. (hardest).
- **2.2.** Whittaker models come about at step 1. These correspond to induced representations from N_F .

2.1 Structure on subgroups

2.3. Structure of B_F .

- B_F is a solvable grp², whose normal abelian gp is U_F
- N_F and D_F and normal subgroup of B_F .
- We have the followin two decompositions for B_F

$$B_F = D_F \rtimes Z_F = N_F \rtimes A_F$$

2.4. Structure of D_F .

- $D_F = N_F \rtimes C_F$.
- The action of C_F on N_F is by conjugation of F^{\times} on F^+ , i.e.

$$\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha^{-1} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \alpha\beta \\ 0 & 1 \end{pmatrix}$$

2.2 Kirillov model

2.5. Kirillov representation of D_F . It $V \subset \operatorname{Map}(F^{\times}, \mathbb{C})$, complex valued functions, on which D_F operates by

$$\pi \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \xi(x) = \psi_F(bx)\xi(ax)$$

then π is a *Kirillov representation*. This also restircts to an action on $\operatorname{Map}^{\infty}(F^{\times}, \mathbb{C}), \operatorname{Map}_{c}^{\infty}(F^{\times}, \mathbb{C})$. We denote this repn. as

$$(\xi_{\psi}, \operatorname{Map}(F^{\times}))$$

Definition 2.6. A Kirillov model of (π, V) , is an equiv. repn. of G_F on a subspace of $V' \subset \operatorname{Map}(F^{\times})$ such that the canonical inclusion $D_F \hookrightarrow G_F$ identifies $\operatorname{Res}_{D_F}^{G_F} V'$ as a submodule of $(\xi_{\psi}, \operatorname{Map}(F^{\times}))$. Here

$$\operatorname{Res}_{D_F}^{G_F} : \operatorname{Rep}(G_F) \to \operatorname{Rep}(D_F)$$

is the restrict. functor (left adj. to induction).

Theorem 2.7. Let (π, V) be an admissible infinite dimensional representation of G_F . Then π has a unique Kirillov model.

 $^{^{2}}$ i.e. there is a subnormal series whose factors are abelian.

Proof. Step 0. (π, V) is a Pre-Kirillov model: we can identify V as a subspace of Map^{∞} $(F^{\times}, J_{\psi}V)$.

Step 1. Understanding this space.

Step 2. Understanding the action of G_F .

2.8. A key input in *Step 2* is understanding the structure theory of G_F , it can be decomposed to three types of matrices.

- Diagonal.
- D_F .

•
$$w = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

We will need a generalized version of Mellin transform.

2.9. We will end with showing that for an irred. adm. inf. dim. rep. (π, V) :

- 1. $J_{\psi}V$ is one dimensional.
- 2. π admits a unique Kirillov model.
- 3. π admits a unique Whittaker model.

3 Uniqueness of models

3.1 Representations and functionals on Schwartz Space

[JL70, 2]

Definition 3.1. We define a representation (ξ_{ψ}, D_F) on the spaces Map(F, X) and Map (F^{\times}, X) by ³

$$\left(\xi_{\psi}\begin{pmatrix}a & x\\ 0 & 1\end{pmatrix}\phi\right)(y) = \psi(yx)\phi(ya) \tag{1}$$

This also induces action on $\operatorname{Map}^{\infty}(F, X), \operatorname{Map}^{\infty}_{c}(F, X)$ etc.

Lemma 3.2. [JL70, 2.13.3] Let ϕ be an element of $\mathcal{S}(F^{\times})$. Then there exists

- A finite subset S of F^{\times}
- Complex numbers $\lambda_y \in S$ where

$$\sum \lambda_y = 0, \quad \sum \lambda_y \psi(y) = \phi(1)$$

• an element $\phi_0 \in \operatorname{Map}_c^{\infty}(F^{\times})$.

such that

$$\phi = \sum_{y \in S} \lambda_y \phi_{\psi}(n_y) \phi_0$$

³Note that the action of a is on the right.

Proof. Step 1. Fourier transformation Extend ϕ to a function on F - this is still an element on $\mathcal{S}(F)$. Let ϕ' denote the Fourier transform of ϕ .

Step 2. Discreteness Then the function

$$F \times F \to \mathbb{C}, \quad (y, x) \mapsto \phi'(-y)\psi(xy)$$

is loc. const. and cptly. sup. Step 2. Evaluation

Corollary 3.3. [JL70, 2.13.1] Let L be a linear functional on Schwartz space $\mathcal{S}(F^{\times})$ satisfying

$$L(\xi_{\psi}(n_x)\phi) = \psi(x)L(\phi)$$

for all ϕ in $\mathcal{S}(F^{\times})$ and all $x \in F$. Then there is a scalar λ such that

$$L(\phi) = \lambda \phi(1)$$

Proof. Step 0. A linear reduction. As open subgrps of top. groups are also closed, 3. of 5.3, char. fncs. 1_U , where U is an open sbgrp, lies in $\operatorname{Map}^{\infty}(F^{\times})$ and in $\operatorname{Map}^{\infty}_{c}(F^{\times}) = \mathcal{S}(F^{\times})$ if U is cpt.

Hence, given $\phi \in \mathcal{S}(F^{\times})$, replacing subtracting by $\phi(1)1_U$, we have

$$L(\phi - \phi(1)1_U) = L(\phi) - \phi(1)L(1_U)$$

If we can prove Step 1. below, we have obtained the desired form with $\lambda L(1_U)$.

Step 1. Use the representation in 3.2

3.2 Uniqueness of Whittaker functional

Definition 3.4. (π, V) be as ctx. A Whittaker functional on V is a linear map $L: V \to \mathbb{C}$, st.

$$L\left(\pi\begin{pmatrix}1&x\\0&1\end{pmatrix}v\right) = \psi(x)L(v), \quad x \in F, \quad v \in V$$

Corollary 3.5. Let (π, V) be as in ctx.

- 1. The space of Whittaker functional is precisely 1d.
- 2. If (π, V) is given in Kirllov form, the space of Whittaker functionals on V are precisely

$$L(\phi) = \lambda \phi(1) \tag{2}$$

 $\lambda \in \mathbb{C}$.

Proof. Step 0. Existence of Kirillov model was proven (but not uniqueness). We suppose (π, V) is in such a form. Eq. 2 is a linear form. We prove there are no others.

Step 1. Twist a general element in V in to the Schwartz space.

⁴Why do we pass to $\mathcal{S}(F)$?

3.3 Uniqueness of Kirillov model

3.6. (π, V) is as ctx. With its Kirillov model.

Proposition 3.7. Kirillov model of (π, V) is unique. [God70, 5].

Proof. Step 0. Set up. Let (π', V') be a representation equivalent to (π, V) , where $V' \subset \operatorname{Map}(F^{\times}, \mathbb{C})$ whose restriction to D_F is ψ_F . Let $A: V' \to V$ denote the iso of G_F -repn.

Step 1. Inducing new Whittaker functional.

Step 1a. Define $L\phi := (A\phi)(1)$ for $\phi \in V$. If we show that L is Whittaker functional then $A\phi = \lambda\phi$, for some $\lambda \in \mathbb{C}$. Thus V = V' with $\pi(g) = \pi'(g)$ (using the fact that ϕ is also an iso.)

Step 1b. Checking that L as defined is indeed a Whittaker functional. This is a simple computational check and N_F linearity.

$$L\left(\pi\begin{pmatrix}1 & x\\ 0 & 1\end{pmatrix}\right) = \left(\pi'\begin{pmatrix}1 & x\\ 0 & 1\end{pmatrix}(A\phi)\right)(1) = \psi(x)L(\phi(1))$$

3.4 Uniqueness of Whittaker Model

Definition 3.8. Let $\mathcal{W}(\psi)$ be subspace of Map (G_F, \mathbb{C}) st.

$$W\left(\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}g\right) = \psi(x)W(g)$$

This is a G_F -repr via right regular action, denoted $(\rho, \mathcal{W}(\psi))$, i.e.

$$(\rho(h)W)(g) = W(gh)$$

Theorem 3.9. [JL70, 2.14] Let (π, V) be as in ctx. Then π has a unique Whittaker model.

Proof. Step 0. Existence. We define an injection of G_F -modules,

$$V \hookrightarrow \operatorname{Map}(G_F, \mathbb{C}), \quad \phi \mapsto W_\phi$$

$$W_{\phi}(g) \coloneqq (\pi(g)\phi)(1) \tag{3}$$

whose image is in $\mathcal{W}(\psi)$. There are a few things to be checked.

1. Well defined, i.e. the image indeed lies in $\mathcal{W}(\psi)$. Now

$$W_{\phi}(n_x g) = (\pi n_x \pi(g)\phi)(1)) = \psi(x)(\pi(g)\phi)(1)$$

2. The maps is clearly \mathbb{C} -linear. It is G_F -equivariant too:

$$W_{\pi(h)\phi}(g) = (\pi(g)\pi(h)\phi)(1) = W_{\phi}(gh) = (\rho(h)W_{\phi})(g)$$

3. Injectivity. Note

$$W_{\phi}\left(\begin{pmatrix}a & 0\\ 0 & 1\end{pmatrix}\right) = \phi(a)$$

so ϕ is zero iff W_{ϕ} is.

Step 1. Uniqueness. This proof imitates that of 3.7

4 Contragredient Representation

4.1 Action of Hecke algebra

[Bum98, p.428], [Vin08, e.2]

4.1. In the tdlc group G_F of interest, the left and right Haar measures conincide: G is *unimodular*. We will assume this for tdlc considered.

Example 4.2. Right and left reg rep. We can define rep'ns ρ, λ of G on Map^{∞}(G) by

 $(\rho(g)f)(h) = f(gh), \quad (\lambda(g)f)(h) = f(g^{-1}h)$

Definition 4.3. Hecke algebra. We denote

$$\mathcal{H}_G \coloneqq \operatorname{Map}^{\infty}_c(G, \mathbb{C})$$

We make \mathcal{H}_G an algebra (without unit) under convolution

$$(\phi_1 * \phi_2)(h) \coloneqq \int_G \phi_1(hg^{-1})\phi_2(g) \, dg$$

To show that \mathcal{H}_G is indeed closed under * requires justification, see 4.5.

- **4.4.** There is a rather explicit description of an element $f \in \operatorname{Map}_{c}^{\infty}(G, V)$. Let $Y = \operatorname{supp}(f)$.
 - 1. For all $y \in Y$, choose an open nhood U_y of y, such that f is constant.
 - 2. Since Y is cpt by definition,

$$Y = \bigcup_{1}^{m} U_i$$

where we may assume U_i are disjoint. Since each U_i is the complement of finite union of open sets, they are closed and cpt.

3. We obtain that

$$f = \sum_{1}^{m} c_i \mathbb{1}_{U_i}$$

4.5. Using the representation in 4.4, let $f_1, f_2 \in \operatorname{Map}_c^{\infty}(G, V)$. The computation of $f_1 * f_2$ boils down to computing $f_1 = 1_K, f_2 = 1_H$ for two distinct cpt. open subgrps $H, K \subset G$. But we have

$$1_H \star 1_K(s) = \int_K 1_H(sg^{-1}) \, dg$$

so that the value in integral is nonzero iff $sg^{-1} \in K$ iff $s \in HK$.

This implies cpt support:

$$\operatorname{supp}\left(1_{H} * 1_{K}\right) \subset HK$$

where the RHS is cpt by [...].

We also have local constancy: consider a open nhood of identity contained in $K \cap H$ [...]

4.6. Action of Hecke algebra. \mathcal{H}_G acts on V by π

$$\pi(\varphi)(v) \coloneqq \int_{G} \phi(g) \pi(g) v \, dg \tag{4}$$

4.7. Finite action. Here is where the fact that V is a *smooth* representation comes in handy. For a fixed choice of v, there is an open cpt. K_0 that fixes v. As ϕ is locally constant, we can choose K_0 sufficiently small for which ϕ is constant.⁵

We may replace 4 by

$$\frac{1}{\operatorname{vol}(K_0)}\sum_i \phi(g_i)\pi(g_i)u$$

This shows us that the action of G is purely "algebraic".

4.2 Hecke alg. of cpt. open sbgrp.

4.8. We let K_0 denote an open cpt. subgroup of G. The 0 is to signify "open".

Definition 4.9. Important subalgebra *with* identity. We let

$$\mathcal{H}_{G,K_0} \coloneqq \{ \phi \in \mathcal{H}_G : , \phi(k_1gk_2) = \phi(g) \text{ for all } k_1, k_2 \in K_0 \}$$

denote the K_0 biinvariant functions. We sometimes omit G when context clear.

Corollary 4.10. \mathcal{H}_{K_0} satisfies:

1. It has identity

$$\epsilon_{K_0} \coloneqq \mu(K_0)^{-1} \mathbf{1}_{K_0}$$

where μ is the Haar measure on G.⁶

- 2. $\mathcal{H}_{K_0} = \epsilon_{K_0} \mathcal{H}_G \epsilon_{K_0}$, which is $\mathcal{H}_G[\epsilon_{K_0}]$ in lang. of idem. alg.
- 3. \mathcal{H}_{K_0} is a \mathbb{C} -algebra with unit ϵ_{K_0} and subalgebra of \mathcal{H} .

Proof. 2. \subset . This is a standard cmptn. If ϕ is right invariant on action of K_0 ,

$$\phi * 1_{K_0}(h) = \frac{1}{\mu(K_0)} \int_K \phi(hg^{-1}) \, dg = \phi(h) \tag{5}$$

Proposition 4.11. [Vin08, e.2.2]

$$\mathcal{H}_G = \bigcup_{K_0 \subset_{\mathrm{cpt,open}} G} \mathcal{H}_{K_0}$$

⁵Precisely, the argument goes as follows: we let W be an open set containing e for which ϕ is constant. Since G is tot. disc. there is a compact open $W' \subset W$. Define our new cpt. open to be $W' \cap K_0$.

⁶Note that in general for any compact open set $S, \epsilon_S := \mu(S)^{-1} \mathbf{1}_S \in \mathcal{H}_G$.

4.3 Idempotented algebras

[Bum98, 3.4].

4.12. In the context of idempotented algebras, the ring can be *non*-comm., and *non*-unit.

4.13. In this section we will discuss

- Definition of idempotent algebras.
- Modules over idempotented algebras.

Definition 4.14. Basic notions in idempotent.

- An element $e \in R$ is *idempotent* if $e^2 = e$.
- The idpt. forms a poset by defining

$$e \le f \Leftrightarrow ef = fe = e$$

Example 4.15. Com. model. Let X be a set, then the set of \mathbb{C} -valued functions, Map (X, \mathbb{C}) , form a com. \mathbb{C} -alg via pt. wise add. and mult. The characteristic functions are idempotents. Also

$$\chi_B \le \chi_{B'} \Leftrightarrow B \subset B'$$

4.16. A non. com. model is the Hecke algebra with convolution, \mathcal{H}_G .

Definition 4.17. An *idempotented algebra* over k, is a k-algebra H with a collection of idem. E st.

- 1. For all $e_1, e_2 \in E$, exists $f \in E$, such that $e_1, e_2 \leq f$.
- 2. For all $x \in H$, there exists $e \in E$, with ex = xe = x.

Following convention when we speak of an idemp. in (H, E) we mean an element in E.

Definition 4.18. Subrings induced from idpts. If H is a ring, $e \in \text{Idem}(H)$, then write

$$H[e] = eHe$$

Definition 4.19. Submodules induced from idpt. alg.

Corollary 4.20. If
$$e \leq f$$
 then $H[e]$ is a subring of $H[f]$.

Proof. Choose an arbitrary element $ebe \in H[e]$, then $ebe = febef \in H[f]$.

4.21. Now we discuss modules over idempotented algebras. Let H be an idpt. alg, M a H-module.

• *M* is smooth if

$$\operatorname{colim}_e M[e] \to M \tag{6}$$

is an iso.

• *M* is *admissible* if eM is fd over *k* for all $e \in E$.

4.22. Smoothness is equivalent to the condition if $x \in M$, then exists $e \in E$, such that ex = x.

Proof. ⇒. iso. of 6 implies every element of x = M is of the form yx', for some $y \in E, x' \in M$. Hence yx = x. \Leftarrow . 6 in general is an inj. Hypothesis yields surj.

Theorem 4.23. [JL70, p25] Let G be tdlc. We regard \mathcal{H}_G as an idempotented alg⁷

1. Let (π, V) be a smooth. repn. of G. If $f \in \mathcal{H}_G$, then we obtain a smooth repn of \mathcal{H}_G of V by

$$\pi(f)v = \int_G f(g)\pi(g)v\,dg\tag{7}$$

This induces smooth. repn \mathcal{H}_G on V.

- 2. The construction is
 - a bij. on smooth repn.
 - a bij. on irr. repn.
 - stable subspaces.

Proof. 1. Step 0. Making sure the map is well defined. The function $g \mapsto f(g)\pi(g)v$ is in $\operatorname{Map}_c^{\infty}(G,V)$. Hence, the sum is finite. Change of var. shows

$$\pi(f_1 * f_2) = \pi(f_1)\pi(f_2)v$$

Step 0a. This is a smooth representation. Nts. exists $\xi \in \text{Idem}(\mathcal{H}_G)$

$$\pi \xi v = v$$

Step 2. Constructing inverse map. For $v \in V$, write ⁸

$$v = \sum_{1}^{n} \pi f_{i} v_{i}$$
$$\pi(g) \cdot v = \sum_{1}^{n} \pi(\lambda(g) \cdot f_{i}) v_{i}$$

 λ where λ is the left reg. action of G on \mathcal{H}_G .

4.24. Now let us discuss the contragredient representation. We will suppose our idempotented algebra has an anti involution, ι . e.g. in \mathcal{H}_G , $f^{\iota}(x) \coloneqq f(x^t)$.

Definition 4.25. Let M ve a H-module.

4.4 Contragredient representation

- **4.26.** Let (π, V) be an adm. repn of G_F .
- **4.27.** The contragredient repn.
 - If $\hat{v}: V \to \mathbb{C}$ is a linear functional, we write, for $v \in V$,

 $\langle v, \hat{v} \rangle \coloneqq \hat{v}(v)$

 \hat{v} is smooth if there exists an open nhood U of identity in G such that

 $\langle \pi(g)v, \hat{v} \rangle = \langle v, \hat{v} \rangle$

for all $g \in U$, $v \in V$. We denote by \hat{V} the set of all smooth functions on V.

⁷with 1_U as idem. where U is cpt open.

⁸Note that we can take i = 1 by definition of smoothness.

• We have the contragradient representation $(\hat{\pi}, \hat{V})$, given by

$$\langle v, \hat{\pi}(g) \hat{v} \rangle = \langle \pi(g^{-1}) v, \hat{v} \rangle$$

Remark 4.28. There are two points to be made.

1. One has to check $\hat{\pi}(g)\hat{v}$ is smooth. Indeed, we wish to find an open sbgrp. W such that for all $v \in V$,

$$g \cdot \hat{v}(v) = g \cdot \hat{v}(Wv)$$

where we wrote g for $\hat{\pi}g$. This can be restated as

$$\hat{v}(g^{-1}v) = \hat{v}((g^{-1}Wg)g^{-1}v)$$

for all $v \in V$. Thus, our desired open set is $W = gUg^{-1}$, where U is given from definition 1. of 4.27.

2. The very definition of smooth functions guarantees that $(\hat{\pi}, \hat{V})$ is smooth rep'n.

4.29. In the pursuing discussion (π, V) is inf. dim. and irred. We denote its central quasi-char. by ω .

Lemma 4.30. [JL70, p73] Let (π, V) be taken in Kirllov form. The space of Kirllov model of $\omega \otimes \pi$ consists of linear functionals $\omega \phi$, with $\phi \in V$.

Proof. Let (π', V') be the subreps of (π, V) consisting of $\omega \phi$ with $\phi \in V$. We can equivalence map

$$(w \otimes \pi, V) \to (\pi', V'), \quad \phi \mapsto \omega \phi$$

it suffices to check the action on V' restricts to ξ_{ψ} .

Theorem 4.31. [JL70, 2.18]

 $\hat{\pi} \simeq w^{-1} \otimes \pi$

Proof. Step 0. Defining a bilinear form. We begin by proposing a possible bilinear map

$$\langle \phi, \phi' \rangle = \int_{F^{\times}} \phi(a) \phi'(-a) d^{\times} a \tag{8}$$

5 Appendix

5.1 Topological Groups

5.1. We recall some topological notions. We let $X \in \text{Top}$, G a topological group.

Basics.

• A space X is hom. if given any two points $x, y \in X$, exists $f: X \to X$ such that fx = y.

Local compactness and connectedness.

- X is *locally cpt.* if for all $x \in X$.
- G is a loc. cpt. grp if it is Hausdorf and loc. cpt space.

Example 5.2. Let R be a top. ring. $GL_n(R)$, $M_n(R)$ are both, top. ring, given the subspace topology in R^{n^2} .

5.3. Now let us list a whole host of properties for a topological group. G

- 1. If $U \subset G$, then U is open iff tU is open iff Ut is open iff U^{-1} for all $t \in G$.
- 2. Every nhood U of 1 contains an open symmetric nhood V of 1 such that $VV \subset U$.
- 3. Every open subgroup is also closed.
- 4.

Proof. 3. Let $H \subset G$ be open subgroup. G can be written as the union of cosets of H. We have the relation

$$Y = \bigcup_{x \in G \smallsetminus H} xH$$
$$H = G \smallsetminus Y$$

Proposition 5.4. [Vin08, a.4.1] Let G be a Hausdorff top. grp. Any subgroup of G which is loc. cpt. is closed.

Corollary 5.5. [Vin08, e.4.2] A Hausdorff top. grp. G is loc. cpt. and t.d. iff every nhood of 1 contains a compact open subgroup.

Remark 5.6. Importantly, for those reading the text [BZ76], these are the *l-groups*.

5.2 Smooth and admissible representations

Definition 5.7. Let G be tdlc, (π, V) a representation. V admits no topology.

• π is smooth if for any $v \in V$, stabilizer ⁹

$$\operatorname{Stab}(v) \coloneqq \{ g \in G : gv = v \}$$

is an open subgrp of G. This is nonempty as e lies in the grp.

⁹This is a rather abuse of notation, but the context should make it clear.

• If π is smooth, and if for any open subgroup $U \subset G$

$$V^{U} = \{ v \in V : gv = v \text{ for all } g \in U \}$$

$$\tag{9}$$

is fin. dim, then π is *admissible*.

5.8. Continuity. I find it more natural to interpret smooth representations as *continuous* representations. By definition, if V is given the discrete topology, then (π, V) is smooth iff it is continuous.

Proposition 5.9. Finite dimensionality. Let (π, V) be a fd. rep. of a tdlc group G Then the following are equivalent.

- 1. π is admissible.
- 2. π is smooth.
- 3. Kernel of π is an open subgroup.
- 4. π , as a map $G \to GL(V)$ is continuous.

Proof. 1 \Leftrightarrow 2 is clear from defn. 2 \Leftrightarrow 3. Suppose ker π is open. Then for any $g \in \operatorname{Stab}(v)$, $g \ker \pi \subset \operatorname{Stab}(v)$ is an open hood of g. So $\operatorname{Stab}(v)$ is open. Suppose $\operatorname{Stab}(v)$ is open. Let $\{v_i\}$ be a \mathbb{C} -basis of V, so

$$\ker \pi = \bigcap_{1}^{n} \operatorname{Stab}(v_i)$$

is open.

 $3 \Leftrightarrow 4.$

5.10. Irreducible rep'ns.

- If (π, V) is a smooth or admissible rep'n, then every G-invariant subspace of V is also smooth or admissible rep'n respectively.
- A smooth representation (π, V) of G is *irreducible* if V contains no nontrivial G-invariant subspaces.

References

- [BZ76] I. N Bernstein and A. V Zelevinskii, Representations of the grou GL(n, F) where F is a non-archimedean local field (1976). $\uparrow 5.6$
- [Bum98] D Bump, Automorphic Forms and Representations (1998). ¹4.1, 4.3
- $[{\rm God70}]$ R. Godement, Notes on Jacquet-Langlands' theory (1970). $\uparrow 3.7$
- [JL70] H. Jacquet and R. P Langlands (1970). ↑1.4, 1.6, 3.1, 3.2, 3.3, 3.9, 4.23, 4.30, 4.31
- [PS83] I. Piatetski-Shapiro, Complex Representations of $GL_2(K)$ for finite fields K (1983). $\uparrow 2.1$
- [Vin08] R. Vinroot, MATH 519 Representations of p-adic groups (2008). ↑4.1, 4.11, 5.4, 5.5