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1 Introduction

1.1. Our goal is to understand irred. adm. repn. of GLn(F ) for n = 2, F local narc.

1.1 Writing conventions

1.2. I will be using many shorthands, generally following a ”syllabic abbreviation”, i.e.

• ext. : extension. With first three letters for the type of extensions.

– alg./sep. : algebraic/separable

• cplt./cpt./td.: complete/compact/totally disconnected.

• wrt./narc. : with respect to/ non-archimedean.

In general, the context (ctx) should make it clear what I’m talking about.
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1.2 Notation

1.3. We let F be a fixed loc. field.

• OF its ring of integers, O×
F its grp of units.

• p max. ideal of OF with $ a gen. of p.

• ψ a fixed ntriv. add. char. of F .

1.4. We follow the notation in [JL70] with minor modification. Let GF ∶= GL2(F ) we describe several sbgps

• KF ∶= GL2(OF ), is also a1 max. cpt. open sbgrp.

• ZF is center of GF consisting of scalar matrices, hence iso. to F ×.

• DF be sbgrp. of matrices of the from (a b
0 1

), a ∈ F ×, b ∈ F .

• BF is sbgrp. of matrices of the form (a b
0 d

), also known as Borel subgrp, a, d ∈ F ×, b ∈ F .

• NF is sbgrp. of matrices of the form (1 b
0 1

), b ∈ F . We thus have an identification

F
≃Ð→ NF , x↦ nx ∶= (1 x

0 1
)

• TF is subgrp. of diagonal matrices. the form (a 0
0 d

), a, d ∈ F ×.

• CF is subgrp. of matrices of the form (a 0
0 1

) , a ∈ F ×.

1.5. Mapping spaces. Let X be a space, V ∈ VectC.

• Map(X,V ) is the set of V -valued fncs.

• Map∞(X,V ) ” loc. const. V -valued fncs.

• Map∞c (X,V ) ” loc. const. cptly supported V -value fncs.

Remark 1.6. When V = C, we often omit the V . The second and third type are also called smooth and
schwartz functions respectively, denoted as C∞(X,V ) and S(X,V ) in [JL70].

1is this the?
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2 Overview

2.1. [PS83, 13] The method of constructing repns consists of three stages.

1. Use general methods to construct representations of DF .

2. Then we ”jump” to BF an induce characters from BF to G.

3. The last is to explore those repns that do not appear. (hardest).

2.2. Whittaker models come about at step 1. These correspond to induced representations from NF .

2.1 Structure on subgroups

2.3. Structure of BF .

• BF is a solvable grp 2, whose normal abelian gp is UF

• NF and DF and normal subgroup of BF .

• We have the followin two decompositions for BF

BF =DF ⋊ZF = NF ⋊AF

2.4. Structure of DF .

• DF = NF ⋊CF .

• The action of CF on NF is by conjugation of F × on F +, i.e.

(α 0
0 1

)(1 β
0 1

)(α
−1 0
0 1

) = (1 αβ
0 1

)

2.2 Kirillov model

2.5. Kirillov representation of DF . It V ⊂ Map(F ×,C), complex valued functions, on which DF operates by

π (a b
0 1

) ξ(x) = ψF (bx)ξ(ax)

then π is a Kirillov representation. This also restircts to an action on Map∞(F ×,C),Map∞c (F ×,C). We
denote this repn. as

(ξψ,Map(F ×))

Definition 2.6. A Kirillov model of (π,V ), is an equiv. repn. of GF on a subspace of V ′ ⊂ Map(F ×) such
that the canonical inclusion DF ↪ GF identifies ResGF

DF
V ′ as a submodule of (ξψ,Map(F ×)). Here

ResGF

DF
∶ Rep(GF )→ Rep(DF )

is the restrict. functor (left adj. to induction).

Theorem 2.7. Let (π,V ) be an admissible infinite dimensional representation of GF . Then π has a unique
Kirillov model.

2i.e. there is a subnormal series whose factors are abelian.
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Proof. Step 0. (π,V ) is a Pre-Kirillov model: we can identify V as a subspace of Map∞(F ×, JψV ).

Step 1. Understanding this space.

Step 2. Understanding the action of GF .

2.8. A key input in Step 2 is understanding the structure theory of GF , it can be decomposed to three types
of matrices.

• Diagonal.

• DF .

• w = ( 0 1
−1 0

)

We will need a generalized version of Mellin transform.

2.9. We will end with showing that for an irred. adm. inf. dim. rep. (π,V ):

1. JψV is one dimensional.

2. π admits a unique Kirillov model.

3. π admits a unique Whittaker model.

3 Uniqueness of models

3.1 Representations and functionals on Schwartz Space

[JL70, 2]

Definition 3.1. We define a representation (ξψ,DF ) on the spaces Map(F,X) and Map(F ×,X) by 3

(ξψ (a x
0 1

)φ)(y) = ψ(yx)φ(ya) (1)

This also induces action on Map∞(F,X),Map∞c (F,X) etc.

Lemma 3.2. [JL70, 2.13.3] Let φ be an element of S(F ×). Then there exists

• A finite subset S of F ×

• Complex numbers λy ∈ S where

∑λy = 0, ∑λyψ(y) = φ(1)

• an element φ0 ∈ Map∞c (F ×).

such that

φ = ∑
y∈S

λyφψ(ny)φ0

3Note that the action of a is on the right.
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Proof. Step 1. Fourier transformation Extend φ to a function on F - this is still an element on S(F ). Let φ′

denote the Fourier transform of φ. 4

Step 2. Discreteness Then the function

F × F → C, (y, x)↦ φ′(−y)ψ(xy)

is loc. const. and cptly. sup.
Step 2. Evaluation

Corollary 3.3. [JL70, 2.13.1] Let L be a linear functional on Schwartz space S(F ×) satisfying

L(ξψ(nx)φ) = ψ(x)L(φ)

for all φ in S(F ×) and all x ∈ F . Then there is a scalar λ such that

L(φ) = λφ(1)

Proof. Step 0. A linear reduction. As open subgrps of top. groups are also closed, 3. of 5.3, char. fncs. 1U ,
where U is an open sbgrp, lies in Map∞(F ×) and in Map∞c (F ×) = S(F ×) if U is cpt.

Hence, given φ ∈ S(F ×), replacing subtracting by φ(1)1U , we have

L(φ − φ(1)1U) = L(φ) − φ(1)L(1U)

If we can prove Step 1. below, we have obtained the desired form with λL(1U).

Step 1. Use the representation in 3.2

3.2 Uniqueness of Whittaker functional

Definition 3.4. (π,V ) be as ctx. A Whittaker functional on V is a linear map L ∶ V → C, st.

L(π (1 x
0 1

) v) = ψ(x)L(v), x ∈ F, v ∈ V

Corollary 3.5. Let (π,V ) be as in ctx.

1. The space of Whittaker functional is precisely 1d.

2. If (π,V ) is given in Kirllov form, the space of Whittaker functionals on V are precisely

L(φ) = λφ(1) (2)

λ ∈ C.

Proof. Step 0. Existence of Kirillov model was proven (but not uniqueness). We suppose (π,V ) is in such a
form. Eq. 2 is a linear form. We prove there are no others.

Step 1. Twist a general element in V in to the Schwartz space.

4Why do we pass to S(F )?
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3.3 Uniqueness of Kirillov model

3.6. (π,V ) is as ctx. With its Kirillov model.

Proposition 3.7. Kirillov model of (π,V ) is unique. [God70, 5].

Proof. Step 0. Set up. Let (π′, V ′) be a represemtation equivalent to (π,V ), where V ′ ⊂ Map(F ×,C) whose
restriction to DF is ψF . Let A ∶ V ′ → V denote the iso of GF -repn.

Step 1. Inducing new Whittaker functional.

Step 1a. Define Lφ ∶= (Aφ)(1) for φ ∈ V . If we show that L is Whittaker functional then Aφ = λφ, for some
λ ∈ C. Thus V = V ′ with π(g) = π′(g) (using the fact that φ is also an iso.)

Step 1b. Checking that L as defined is indeed a Whittaker functional. This is a simple computational check
and NF linearity.

L(π (1 x
0 1

)) = (π′ (1 x
0 1

)(Aφ)) (1) = ψ(x)L(φ(1))
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3.4 Uniqueness of Whittaker Model

Definition 3.8. Let W(ψ) be subspace of Map(GF ,C) st.

W ((1 x
0 1

) g) = ψ(x)W (g)

This is a GF -repn via right regular action, denoted (ρ,W(ψ)), i.e.

(ρ(h)W ) (g) =W (gh)

Theorem 3.9. [JL70, 2.14] Let (π,V ) be as in ctx. Then π has a unique Whittaker model.

Proof. Step 0. Existence. We define an injectiono of GF -modules,

V ↪Map(GF ,C), φ↦Wφ

Wφ(g) ∶= (π(g)φ)(1) (3)

whose image is in W(ψ). There are a few things to be checked.

1. Well defined, i.e. the image indeed lies in W(ψ). Now

Wφ(nxg) = (πnxπ(g)φ)(1)) = ψ(x)(π(g)φ)(1)

2. The maps is clearly C -linear. It is GF -equivariant too:

Wπ(h)φ(g) = (π(g)π(h)φ)(1) =Wφ(gh) = (ρ(h)Wφ) (g)

3. Injectivity. Note

Wφ ((a 0
0 1

)) = φ(a)

so φ is zero iff Wφ is.

Step 1. Uniqueness. This proof imitates that of 3.7
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4 Contragredient Representation

4.1 Action of Hecke algebra

[Bum98, p.428], [Vin08, e.2]

4.1. In the tdlc group GF of interest, the left and right Haar measures conincide: G is unimodular. We will
assume this for tdlc considered.

Example 4.2. Right and left reg rep. We can define rep’ns ρ, λ of G on Map∞(G) by

(ρ(g)f)(h) = f(gh), (λ(g)f)(h) = f(g−1h)

Definition 4.3. Hecke algebra. We denote

HG ∶= Map∞c (G,C)

We make HG an algebra (without unit) under convolution

(φ1 ∗ φ2) (h) ∶= ∫
G
φ1(hg−1)φ2(g)dg

To show that HG is indeed closed under ∗ requires justification, see 4.5.

4.4. There is a rather explicit description of an element f ∈ Map∞c (G,V ). Let Y = supp(f).

1. For all y ∈ Y , choose an open nhood Uy of y, such that f is constant.

2. Since Y is cpt by definition,

Y =
m

⋃
1

Ui

where we may assume Ui are disjoint. Since each Ui is the complement of finite union of open sets,
they are closed and cpt.

3. We obtain that

f =
m

∑
1

ci1Ui

4.5. Using the representation in 4.4, let f1, f2 ∈ Map∞c (G,V ). The computation of f1 ∗ f2 boils down to
computing f1 = 1K , f2 = 1H for two distinct cpt. open subgrps H,K ⊂ G. But we have

1H ⋆ 1K(s) = ∫
K

1H(sg−1)dg

so that the value in integral is nonzero iff sg−1 ∈K iff s ∈HK.

This implies cpt support:

supp (1H ∗ 1K) ⊂HK

where the RHS is cpt by [...].

We also have local constancy: consider a open nhood of identity contained in K ∩H [...]
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4.6. Action of Hecke algebra. HG acts on V by π

π(ϕ)(v) ∶= ∫
G
φ(g)π(g)v dg (4)

4.7. Finite action. Here is where the fact that V is a smooth representation comes in handy. For a fixed
choice of v, there is an open cpt. K0 that fixes v. As φ is locally constant, we can choose K0 sufficiently
small for which φ is constant. 5

We may replace 4 by
1

vol(K0)
∑
i

φ(gi)π(gi)v

This shows us that the action of G is purely ”algebraic”.

4.2 Hecke alg. of cpt. open sbgrp.

4.8. We let K0 denote an open cpt. subgroup of G. The 0 is to signify ”open”.

Definition 4.9. Important subalgebra with identity. We let

HG,K0 ∶= {φ ∈HG ∶ , φ(k1gk2) = φ(g) for all k1, k2 ∈K0}

denote the K0 biinvariant functions. We sometimes omit G when context clear.

Corollary 4.10. HK0 satisfies:

1. It has identity

εK0 ∶= µ(K0)−11K0

where µ is the Haar measure on G. 6

2. HK0 = εK0HGεK0 , which is HG[εK0] in lang. of idem. alg.

3. HK0 is a C-algebrs with unit εK0 and subalgebra of H.

Proof. 2. ⊂. This is a standard cmptn. If φ is right invariant on action of K0,

φ ∗ 1K0(h) =
1

µ(K0) ∫K
φ(hg−1)dg = φ(h) (5)

Proposition 4.11. [Vin08, e.2.2]

HG = ⋃
K0⊂cpt,openG

HK0

5Precisely, the argument goes as follows: we let W be an open set containing e for which φ is constant. Since G is tot. disc.
there is a compact open W ′ ⊂W . Define our new cpt. open to be W ′ ∩K0.

6Note that in general for any compact open set S, εS ∶= µ(S)−11S ∈HG.
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4.3 Idempotented algebras

[Bum98, 3.4].

4.12. In the context of idempotented algebras, the ring can be non-comm., and non-unit.

4.13. In this section we will discuss

• Definition of idempotent algebras.

• Modules over idempotented algebras.

Definition 4.14. Basic notions in idempotent.

• An element e ∈ R is idempotent if e2 = e.

• The idpt. forms a poset by defining
e ≤ f ⇔ ef = fe = e

Example 4.15. Com. model. Let X be a set, then the set of C-valued functions, Map(X,C), form a com.
C-alg via pt. wise add. and mult. The characteristic functions are idempotents. Also

χB ≤ χB′ ⇔ B ⊂ B′

4.16. A non. com. model is the Hecke algebra with convolution, HG.

Definition 4.17. An idempotented algebra over k, is a k-algebra H with a collection of idem. E st.

1. For all e1, e2 ∈ E, exists f ∈ E, such that e1, e2 ≤ f .

2. For all x ∈H, there exists e ∈ E, with ex = xe = x.

Following convention when we speak of an idemp. in (H,E) we mean an element in E.

Definition 4.18. Subrings induced from idpts. If H is a ring, e ∈ Idem(H), then write

H[e] = eHe

Definition 4.19. Submodules induced from idpt. alg.

Corollary 4.20. If e ≤ f then H[e] is a subring of H[f].

Proof. Choose an arbitrary element ebe ∈H[e], then ebe = febef ∈H[f].

4.21. Now we discuss modules over idempotented algebras. Let H be an idpt. alg, M a H-module.

• M is smooth if
colimeM[e]→M (6)

is an iso.

• M is admissible if eM is fd over k for all e ∈ E.

4.22. Smoothness is equivalent to the condition if x ∈M , then exists e ∈ E, such that ex = x.

Proof. ⇒. iso. of 6 implies every element of x =M is of the form yx′, for some y ∈ E,x′ ∈M . Hence yx = x.
⇐. 6 in general is an inj. Hypothesis yields surj.
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Theorem 4.23. [JL70, p25] Let G be tdlc. We regard HG as an idempotented alg7

1. Let (π,V ) be a smooth. repn. of G. If f ∈HG, then we obtain a smooth repn of HG of V by

π(f)v = ∫
G
f(g)π(g)v dg (7)

This induces smooth. repn HG on V .

2. The construction is

• a bij. on smooth repn.

• a bij. on irr. repn.

• stable subspaces.

Proof. 1. Step 0. Making sure the map is well defined. The function g ↦ f(g)π(g)v is in Map∞c (G,V ).
Hence, the sum is finite. Change of var. shows

π(f1 ∗ f2) = π(f1)π(f2)v

Step 0a. This is a smooth representation. Nts. exists ξ ∈ Idem(HG)

πξv = v

Step 2. Constructing inverse map. For v ∈ V , write 8

v =
n

∑
1

πfivi

π(g) ⋅ v =
n

∑
1

π(λ(g) ⋅ fi)vi

λ where λ is the left reg. action of G on HG.

4.24. Now let us discuss the contragredient representation. We will suppose our idempotented algebra has
an anti involution, ι. e.g. in HG, f ι(x) ∶= f(xt).

Definition 4.25. Let M ve a H-module.

4.4 Contragredient representation

4.26. Let (π,V ) be an adm. repn of GF .

4.27. The contragredient repn.

• If v̂ ∶ V → C is a linear functional, we write, for v ∈ V ,

⟨v, v̂⟩ ∶= v̂(v)

v̂ is smooth if there exists an open nhood U of identity in G such that

⟨π(g)v, v̂⟩ = ⟨v, v̂⟩

for all g ∈ U , v ∈ V . We denote by V̂ the set of all smooth functions on V .

7with 1U as idem. where U is cpt open.
8Note that we can take i = 1 by definition of smoothness.
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• We have the contragradient represention (π̂, V̂ ), given by

⟨v, π̂(g)v̂⟩ = ⟨π(g−1)v, v̂⟩

Remark 4.28. There are two points to be made.

1. One has to check π̂(g)v̂ is smooth. Indeed, we wish to find an open sbgrp. W such that for all v ∈ V ,

g ⋅ v̂(v) = g ⋅ v̂(Wv)

where we wrote g for π̂g. This can be restated as

v̂(g−1v) = v̂((g−1Wg) g−1v)

for all v ∈ V . Thus, our desired open set is W = gUg−1, where U is given from definition 1. of 4.27.

2. The very definition of smooth functions guarantees that (π̂, V̂ ) is smooth rep’n.

4.29. In the pursuing discussion (π,V ) is inf. dim. and irred. We denote its central quasi-char. by ω.

Lemma 4.30. [JL70, p73] Let (π,V ) be taken in Kirllov form. The space of Kirllov model of ω ⊗ π consists
of linear functionals ωφ, with φ ∈ V .

Proof. Let (π′, V ′) be the subrepn of (π,V ) consissting of ωφ with φ ∈ V . We can equivalence map

(w ⊗ π,V )→ (π′, V ′), φ↦ ωφ

it suffices to check the action on V ′ restricts to ξψ.

Theorem 4.31. [JL70, 2.18]
π̂ ≃ w−1 ⊗ π

Proof. Step 0. Defining a bilinear form. We begin by proposing a possible bilinear map

⟨φ,φ′⟩ = ∫
F×

φ(a)φ′(−a)d×a (8)
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5 Appendix

5.1 Topological Groups

5.1. We recall some topological notions. We let X ∈ Top, G a topological group.

Basics.

• A space X is hom. if given any two points x, y ∈X, exists f ∶X →X such that fx = y.

Local compactness and connectedness.

• X is locally cpt. if for all x ∈X.

• G is a loc. cpt. grp if it is Hausdorf and loc. cpt space.

Example 5.2. Let R be a top. ring. GLn(R), Mn(R) are both, top. ring, given the subspace topology in

Rn
2

.

5.3. Now let us list a whole host of properties for a topological group. G

1. If U ⊂ G, then U is open iff tU is open iff Ut is open iff U−1 for all t ∈ G.

2. Every nhoodo U of 1 contains an open symmetric nhood V of 1 such that V V ⊂ U .

3. Every open subgroup is also closed.

4.

Proof. 3. Let H ⊂ G be open subgroup. G can be written as the union of cosets of H. We have the relation

Y = ⋃
x∈G∖H

xH

H = G ∖ Y

Proposition 5.4. [Vin08, a.4.1] Let G be a Hausdorff top. grp. Any subgroup of G which is loc. cpt. is
closed.

Corollary 5.5. [Vin08, e.4.2] A Hausdorff top. grp. G is loc. cpt. and t.d. iff every nhood of 1 contains a
compact open subgroup.

Remark 5.6. Importantly, for those reading the text [BZ76], these are the l-groups.

5.2 Smooth and admissible representations

Definition 5.7. Let G be tdlc, (π,V ) a representation. V admits no topology.

• π is smooth if for any v ∈ V , stabilizer 9

Stab(v) ∶= {g ∈ G ∶ gv = v}

is an open subgrp of G. This is nonempty as e lies in the grp.

9This is a rather abuse of notation, but the context should make it clear.
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• If π is smooth, and if for any open subgroup U ⊂ G

V U = {v ∈ V ∶ gv = v for all g ∈ U} (9)

is fin. dim, then π is admissible.

5.8. Continuity. I find it more natural to interpret smooth representations as continuous representations. By
definition, if V is given the discrete topology, then (π,V ) is smooth iff it is continuous.

Proposition 5.9. Finite dimensionality. Let (π,V ) be a fd. rep. of a tdlc group G Then the following are
equivalent.

1. π is admissible.

2. π is smooth.

3. Kernel of π is an open subgroup.

4. π, as a map G→ GL(V ) is continuous.

Proof. 1 ⇔ 2 is clear from defn. 2 ⇔ 3. Suppose kerπ is open. Then for any g ∈ Stab(v), g kerπ ⊂ Stab(v)
is an open hood of g. So Stab(v) is open. Suppose Stab(v) is open. Let {vi} be a C-basisc of V , so

kerπ =
n

⋂
1

Stab(vi)

is open.

3 ⇔ 4.

5.10. Irreducible rep’ns.

• If (π,V ) is a smooth or admissible rep’n, then every G-invariant subspace of V is also smooth or
admissible rep’n respectively.

• A smooth representation (π,V ) of G is irreducible if V contains no nontrivial G-invariant subspaces.



15 REFERENCES

References

[BZ76] I. N Bernstein and A. V Zelevinskii, Representations of the grou GL(n,F ) where F is a non-archimedean local field
(1976). ↑5.6

[Bum98] D Bump, Automorphic Forms and Representations (1998). ↑4.1, 4.3

[God70] R. Godement, Notes on Jacquet-Langlands’ theory (1970). ↑3.7

[JL70] H. Jacquet and R. P Langlands (1970). ↑1.4, 1.6, 3.1, 3.2, 3.3, 3.9, 4.23, 4.30, 4.31

[PS83] I. Piatetski-Shapiro, Complex Representations of GL2(K) for finite fields K (1983). ↑2.1

[Vin08] R. Vinroot, MATH 519 - Representations of p-adic groups (2008). ↑4.1, 4.11, 5.4, 5.5


	Introduction
	Writing conventions
	Notation

	Overview
	Structure on subgroups
	Kirillov model

	Uniqueness of models
	TEXT
	TEXT
	TEXT
	TEXT

	Contragredient Representation
	TEXT
	TEXT
	TEXT
	Contragredient representation

	TEXT
	TEXT
	TEXT


